
Probability Theory Review: 2-11

● common pdfs: Normal, Uniform, Exponential

● how does kernel density estimation work?

● common pmfs: Binomial (Bernoulli), Discrete Uniform, Geometric

● cdfs (and how to transform out from a random number generator (i.e. uniform 

distribution)  into another distribution)

● how to plot: pdfs, cdfs, and pmfs in python. 

● MLE revisited: how to derive the parameter estimate from the likehood 

function
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Maximum Likelihood Estimation (parameter estimation)

Given data and a distribution, how does one choose the parameters?

likelihood function: log-likelihood function:

maximum likelihood estimation: What is the θ that maximizes L?

Example: X
1
, X

2
, …, X

n
 ~ Bernoulli(p), then f(x;p) = px(1 - p)1-x, for x = 0, 1.

take the derivative and set to 0 to find:
117



Maximum Likelihood Estimation 

Given data and a distribution, how does one choose the parameters?

likelihood function: log-likelihood function:

maximum likelihood estimation: What is the θ that maximizes L?

Example: X ~ Normal(μ, σ), then

take the derivative and set to 0 to find:
118

GOAL: 



Maximum Likelihood Estimation 

Given data and a distribution, how does one choose the parameters?

likelihood function: log-likelihood function:

maximum likelihood estimation: What is the θ that maximizes L?

Example: X ~ Normal(μ, σ), then

take the derivative and set to 0 to find:
119

GOAL: 

Normal pdf
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Maximum Likelihood Estimation 
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sample mean

sample variance



Maximum Likelihood Estimation 

Try yourself:

Example: X ~ Exponential(λ),

 hint: should arrive at something almost familiar; then recall 
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Expectation, revisited

Conceptually: Just given the distribution and no other information: what value 
should I expect?
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The expected value of X is:

denoted:

Expectation, revisited

Conceptually: Just given the distribution and no other information: what value 
should I expect?

Formally: 

129



The expected value of X is:

denoted:

Expectation, revisited

Conceptually: Just given the distribution and no other information: what value 
should I expect?

Formally: 

130

“expectation” “mean” “first moment”



The expected value of X is:

denoted:

Expectation, revisited

Conceptually: Just given the distribution and no other information: what value 
should I expect?

Formally: 
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“expectation” “mean” “first moment”

Alternative Conceptualization: If I had to summarize a distribution with only one 
number, what would do that best? 
(the average of a large number of randomly generated numbers from the distribution)


